Difference between revisions of "ZIM file format"

Jump to navigation Jump to search
4,457 bytes added ,  10:12, 16 July 2019
correction, see ZIM File Example
(correction, see ZIM File Example)
(17 intermediate revisions by 7 users not shown)
Line 1: Line 1:
[[Image:Schema File Format.png|500px|right]]
[[Image:Schema File Format.png|500px|right]]
The '''ZIM file format''' is based on the old and deprecated [[Zeno File Format]].See also a walk through an example at [[ZIM File Example]].
The '''ZIM file format''' is based on the old and deprecated [[Zeno File Format]]. See also a walk through example at [[ZIM File Example]].
It starts with a header, which is described here:
It starts with a header, which is described here:


Line 6: Line 6:
A ZIM file starts with a header. This is offset 0.
A ZIM file starts with a header. This is offset 0.


Length in byte, all types are littlendian.
Length in bytes, all types are little-endian.


{|{{Prettytable}}
All integers are unsigned integers (uint_16, uint_32, uint_64).
! Field Name !! Type !!Offset!!Length!! Description                 
 
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !! Offset !! Length !! Description                 
|-
| magicNumber || integer || 0 || 4 || Magic number to recognise the file format, must be 72173914 (0x44D495A)
|-
|-
| magicNumber || integer || 0 || 4 || Magic number to recognise the file format, must be 72173914                   
|majorVersion
|integer
|4
|2
|Major version of the ZIM file format (5 or 6)
|-
|-
| version || integer || 4 || 4 || ZIM=5, bytes 1-2: major, bytes 3-4: minor version of the ZIM file format                         
| minorVersion || integer || 6 || 2 || Minor version of the ZIM file format                         
|-
|-
| uuid || integer || 8 || 16 || unique id of this zim file                           
| uuid || integer || 8 || 16 || unique id of this zim file                           
Line 21: Line 29:
| clusterCount || integer || 28 || 4 || total number of clusters                   
| clusterCount || integer || 28 || 4 || total number of clusters                   
|-
|-
| urlPtrPos || integer || 32 || 8 || position of the directory pointerlist orderes by URL                     
| urlPtrPos || integer || 32 || 8 || position of the directory pointerlist ordered by URL                     
|-
|-
| titlePtrPos || integer || 40 || 8 || position of the directory pointerlist ordered by Title                   
| titlePtrPos || integer || 40 || 8 || position of the directory pointerlist ordered by Title                   
Line 35: Line 43:
| checksumPos || integer || 72 || 8 || pointer to the md5checksum of this file without the checksum itself. This points always 16 bytes before the end of the file.
| checksumPos || integer || 72 || 8 || pointer to the md5checksum of this file without the checksum itself. This points always 16 bytes before the end of the file.
|}
|}
Major version is updated when an incompatible change is integrated in the format (a lib made for a version N will probably not be able to read a version N+1)
Minor version is updated when an compatible change is integrated (a lib made for a minor version n will be able to read a version n+1)
There are currently 2 major versions :
* The version 5
* The version 6 (the same that version 5 + potential extended cluster)


== MIME Type List (mimeListPos) ==
== MIME Type List (mimeListPos) ==
Line 41: Line 57:
The MIME types in this list are zero terminated strings. An empty string marks the end of the MIME type list.
The MIME types in this list are zero terminated strings. An empty string marks the end of the MIME type list.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 60: Line 76:
Since directory entries have variable sizes this is needed for random access.
Since directory entries have variable sizes this is needed for random access.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 79: Line 95:
To get the offset of an article from the title pointer list, you have to look it up in the URL pointer list.
To get the offset of an article from the title pointer list, you have to look it up in the URL pointer list.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 98: Line 114:
Directory entries hold the meta information about all articles, images and other objects in a ZIM file.
Directory entries hold the meta information about all articles, images and other objects in a ZIM file.


There are two types of directory entries: article entries and redirect entries. If the first two bytes are 0xffff the directory entry is a redirect.
There are many types of directory entries:


=== Article Entry ===
=== Article Entry ===
{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 124: Line 140:


=== Redirect Entry ===
=== Redirect Entry ===
{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 138: Line 154:
|-
|-
| url || string || 12 ||zero terminated|| string with the URL as refered in the URL pointer list                           
| url || string || 12 ||zero terminated|| string with the URL as refered in the URL pointer list                           
|-
| title || string || n/a ||zero terminated|| string with an title as refered in the Title pointer list or empty; in case it is empty, the URL is used as title                     
|-
| parameter || data || ||see parameter len|| (not used) extra parameters                       
|}
=== Linktarget or deleted Entry ===
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description               
|-
| mimetype || integer || 0 || 2 || 0xfffe for linktarget, 0xfffd for deleted entry
|-
| parameter len || byte || 2 || 1 || (not used) length of extra paramters                     
|-
| namespace || char || 3 || 1 || defines to which namespace this directory entry belongs                         
|-
| revision || integer || 4 || 4 || (optional) identifies a revision of the contents of this directory entry, needed to identify updates or revisions in the original history                     
|-
| url || string || 16 ||zero terminated|| string with the URL as refered in the URL pointer list                       
|-
|-
| title || string || n/a ||zero terminated|| string with an title as refered in the Title pointer list or empty; in case it is empty, the URL is used as title                       
| title || string || n/a ||zero terminated|| string with an title as refered in the Title pointer list or empty; in case it is empty, the URL is used as title                       
Line 147: Line 182:
The cluster pointer list is a list of 8 byte offsets which point to all data clusters in a ZIM file.
The cluster pointer list is a list of 8 byte offsets which point to all data clusters in a ZIM file.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
Line 162: Line 197:
The clusters contain the actual data of the directory entries. Clusters can be compressed or uncompressed. The purpose of the clusters are that data of more than one directory entry can be compressed inside one cluster, making the compression much more efficient. Typically clusters have a size of about 1 MB.
The clusters contain the actual data of the directory entries. Clusters can be compressed or uncompressed. The purpose of the clusters are that data of more than one directory entry can be compressed inside one cluster, making the compression much more efficient. Typically clusters have a size of about 1 MB.


The first byte of the cluster identifies if it is compressed (4) or not (0). The default is uncompressed indicated by a value of 0 or 1 (obsoleted, inherited by Zeno) while compressed clusters are indicated by a value of 4 which indicates LZMA2 compression (or more precisely XZ, since there is a XZ header). There have been other compression algorithms used before (2: zlib, 3: bzip2) which have been removed. The zimlib uses [http://tukaani.org/xz/ xz-utils] as a C++ implementation of lzma2, for Java see [http://tukaani.org/xz/java.html XZ-Java].
The first byte of the cluster identifies some information about the cluster.
 
The first fourth low bits identifies if the cluster is compressed (4) or not (0). The default is uncompressed indicated by a value of 0 or 1 (obsoleted, inherited by Zeno) while compressed clusters are indicated by a value of 4 which indicates [[LZMA2 compression]] (or more precisely XZ, since there is a XZ header). There have been other compression algorithms used before (2: zlib, 3: bzip2) which have been removed. The zimlib uses [http://tukaani.org/xz/ xz-utils] as a C++ implementation of lzma2, for Java see [http://tukaani.org/xz/java.html XZ-Java].
 
The firth bit identifies if the cluster is extended or not :
* By default (5th bit == 0) the cluster is not extended. It means that the offsets are stored in a 4 bytes length integer. Thus contents stored in the cluster cannot exceed 4Go.
* If the cluster is extended (5th bit == 1), the offsets are stored in 8 bytes length integer. Thus contents stored in the cluster can exceed 4Go.
A cluster can be extended only if the zim major version is 6. Else (major version == 5) cluster will always be not extended.


To find the data of a specific directory entry within a cluster the uncompressed cluster has a list of pointers to blobs within the uncompressed cluster after the first byte.
To find the data of a specific directory entry within a cluster the uncompressed cluster has a list of pointers to blobs within the uncompressed cluster after the first byte.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Field Name !! Type !!Offset!!Length!! Description                 
! Field Name !! Type !!Offset!!Length!! Description                 
|-
|-
| compression type || integer || 0 || 1 || 0: default (no compression), 1: none (inherited from Zeno), 4: LZMA2 compressed               
| cluster information || integer || 0 || 1 || Fourth low bits : 0: default (no compression), 1: none (inherited from Zeno), 4: LZMA2 compressed
Firth bits : 0: normal (OFFSET_SIZE=4) 1: extended (OFFSET_SIZE=8)                
|-
|-
|colspan=5| The following data bytes have to be uncompressed!
| colspan="5" | The following data bytes have to be uncompressed!
|-
|-
| <1st Blob> || integer || 1 || 4 || offset to the <1st Blob>                     
| <1st Blob> || integer || 1 || OFFSET_SIZE || offset to the <1st Blob>                     
|-
|-
| <2nd Blob> || integer || 5 || 4 || offset to the <2nd Blob>                     
| <2nd Blob> || integer || 1+OFFSET_SIZE || OFFSET_SIZE || offset to the <2nd Blob>                     
|-
|-
| <nth Blob> || integer ||(n-1)*4+1|| 4 || offset to the <nth Blob>             
| <nth Blob> || integer ||(n-1)*OFFSET_SIZE+1|| OFFSET_SIZE || offset to the <nth Blob>             
|-
|-
| ... || integer || ... || 4 || ...                           
| ... || integer || ... || OFFSET_SIZE || ...                           
|-
|-
| <last blob / end> || integer || n/a || 4 || offset to the end of the cluster             
| <last blob / end> || integer || n/a || OFFSET_SIZE || offset to the end of the cluster             
|-
|-
| <1st Blob> || data || n/a || n/a || data of the <1st Blob>                     
| <1st Blob> || data || n/a || n/a || data of the <1st Blob>                     
Line 190: Line 233:
|}
|}


The offset addresses uncompressed data. The last pointer points to the end of the data area. So there is always one more offset than blobs. Since the first offset points to the start of the first data, the number of offsets can be determined by dividing this offset by 4. The size of one blob is calculated by the difference of two consecutive offsets.
The offset addresses uncompressed data. The last pointer points to the end of the data area. So there is always one more offset than blobs. Since the first offset points to the start of the first data, the number of offsets can be determined by dividing this offset by OFFSET_SIZE. The size of one blob is calculated by the difference of two consecutive offsets.


== Namespaces ==
== Namespaces ==
Line 197: Line 240:
They can be distinguished by prepending the article namespace before the article name in the URL path, eg. ''http://localhost/A/Articlename''.
They can be distinguished by prepending the article namespace before the article name in the URL path, eg. ''http://localhost/A/Articlename''.


{|{{Prettytable}}
{| class="sortable" style="border-width:1px; border-style:solid; border-color:#888888; background-color:#eeeeee; border-collapse:collapse; empty-cells:show" cellspacing="0" cellpadding="4" {{Prettytable}}
! Namespace !! Description   
! Namespace !! Description   
|-
|-
Line 225: Line 268:
ZIM contents are addressed using URLs fitting the following pattern: <namespace>/<article_url>. The references in articles HTML code (''<a href=""></a>'', ''<img src="">'', etc.) are URL-encoded following the [http://www.ietf.org/rfc/rfc1738.txt RFC 1738] rules.
ZIM contents are addressed using URLs fitting the following pattern: <namespace>/<article_url>. The references in articles HTML code (''<a href=""></a>'', ''<img src="">'', etc.) are URL-encoded following the [http://www.ietf.org/rfc/rfc1738.txt RFC 1738] rules.


Absolute URLs, ie. with a leading slash (''/'') are forbidden, because this avoid including the ZIM contents in any HTTP sub-hierachy. ZIM contents URLs must consequently be relative. Be careful, <article_url> may itself contain slashes (for example "BMW_501/502").
Absolute URLs, ie. with a leading slash (''/'') are forbidden, because this avoid including the ZIM contents in any HTTP sub-hierachy. ZIM contents URLs must consequently be relative.


The URLs in the UrlPointerlist are not encoded. Some readers process the requests that already do the decoding internally whereas most readers will handle the URLs directly. In this case you have to do the decoding before you pass the parameter to zimlib, but zimlib already provides a method to do so.
The URLs in the UrlPointerlist are not encoded. Some readers process the requests that already do the decoding internally whereas most readers will handle the URLs directly. In this case you have to do the decoding before you pass the parameter to zimlib, but zimlib already provides a method to do so.
Line 233: Line 276:


<pre>
<pre>
<a href="/A/foo#headline1">jump to article foo, headline 1</a>
<a href="../A/foo#headline1">jump to article foo, headline 1</a>
</pre>
</pre>


The browser handles these local anchors by itself. It will determine if another article has to be loaded (local anchor inside another article than the currently shown) and will send a request only with the article URL without the local anchor - in our example "/A/foo". After the article has been loaded the browser will then search for the local anchor tag and jump to the right location.
The browser handles these local anchors by itself. It will determine if another article has to be loaded (local anchor inside another article than the currently shown) and will send a request only with the article URL without the local anchor - in our example "../A/foo". After the article has been loaded the browser will then search for the local anchor tag and jump to the right location.


If you use a common rendering engine or HTML widget you don't have to care for this cases, you can just use the requests as they are submitted by the engine / widget.
If you use a common rendering engine or HTML widget you don't have to care for this cases, you can just use the requests as they are submitted by the engine / widget.
Line 254: Line 297:


Old Zeno files used the QUnicode library instead. By switching to UTF-8 the new format is more standard-adherent and easier to understand.
Old Zeno files used the QUnicode library instead. By switching to UTF-8 the new format is more standard-adherent and easier to understand.
== Split ZIM files ==
ZIM files can be split in multiple chunks. This is necessary to be able to store big (over 4GB for example) ZIM files to limited file systems (like FAT32). That said, the chunks can be of any size, but the naming is really important. The ZIM file chunks should be named like following (the file name extensions matter): ''foobar.zimaa, foobar.zimab, foobar.zimac''...


== See also ==
== See also ==
* [[Zeno file format]] (deprecated)
* [[Zeno file format]] (deprecated)
* [[ZIM File Format/4]] (deprecated)
* [[ZIM File Example]]
* [[ZIM File Example]]
14

edits

Navigation menu